Analysis of couch position tolerance limits to detect mistakes in patient setup
نویسندگان
چکیده
This work investigates the use of the tolerance limits on the treatment couch position to detect mistakes in patient positioning and warn users of possible treatment errors. Computer controlled radiotherapy systems use the position of the treatment couch as a surrogate for patient position and a tolerance limit is applied against a planned position. When the couch is out of tolerance a warning is sent to a user to indicate a possible mistake in setup. A tight tolerance may catch all positioning mistakes while as the same time sending too many warnings; while a loose tolerance will not catch all mistakes. We develop a statistical model of the absolute position for the three translational axes of the couch. The couch position for any fraction is considered a random variable x(i). The ideal planned couch position x(p) is unknown before a patient starts treatment and must be estimated from the daily positions x(i). As such x(p) is also a random variable. The tolerance, tol, is applied to the difference between the daily and planned position, d(i) = x(i) - x(p). The di is a linear combination of random variables and therefore the density of di is the convolution of distributions of xi and xp. Tolerance limits are based on the standard deviation of d(i) such that couch positions that are more than 2 standard deviation away are considered out of tolerance. Using this framework we investigate two methods of setting x(p) and tolerance limits. The first, called first day acquire (FDA), is to take couch position on the first day as the planned position. The second is to use the cumulative average (CumA) over previous fractions as the planned position. The standard deviation of d(i) shrinks as more samples are used to determine x(p) and so the tolerance limit shrinks as a function of fraction number when a CumA technique is used. The metrics of sensitivity and specificity were used to characterize the performance of the two methods to correctly identify a couch position as in or out of tolerance. These two methods were tested using simulated and real patient data. Five clinical sites with different indexed immobilization were tested. These were whole brain, head and neck, breast, thorax and prostate. Analysis of the head and neck data shows that it is reasonable to model the daily couch position as a random variable in this treatment site. Using an average couch position for x(p) increased the sensitivity of the couch interlock and reduced the chances of acquiring a couch position that was a statistical outlier. Analysis of variation in couch position for different sites allowed the tolerance limit to be set specifically for a site and immobilization device. The CumA technique was able to increase the sensitivity of detecting out of tolerance positions while shrinking tolerance limits for a treatment course. Making better use of the software interlock on the couch positions could have a positive impact on patient safety and reduce mistakes in treatment delivery.
منابع مشابه
Site‐specific tolerance tables and indexing device to improve patient setup reproducibility
While the implementation of tools such as image-guidance and immobilization devices have helped to prevent geometric misses in radiation therapy, many treatments remain prone to error if these items are not available, not utilized for every fraction, or are misused. The purpose of this project is to design a set of site-specific treatment tolerance tables to be applied to the treatment couch fo...
متن کاملA Simulation Study on Patient Setup Errors in External Beam Radiotherapy Using an Anthropomorphic 4D Phantom
Introduction Patient set-up optimization is required in radiotherapy to fill the accuracy gap between personalized treatment planning and uncertainties in the irradiation set-up. In this study, we aimed to develop a new method based on neural network to estimate patient geometrical setup using 4-dimensional (4D) XCAT anthropomorphic phantom. Materials and Methods To access 4D modeling of motion...
متن کاملEfficacy and workload analysis of a fixed vertical couch position technique and a fixed‐action–level protocol in whole‐breast radiotherapy
Quantification of the setup errors is vital to define appropriate setup margins preventing geographical misses. The no-action-level (NAL) correction protocol reduces the systematic setup errors and, hence, the setup margins. The manual entry of the setup corrections in the record-and-verify software, however, increases the susceptibility of the NAL protocol to human errors. Moreover, the impact...
متن کاملeNAL++: a new and effective off‐line correction protocol for rotational setup errors when using a robotic couch
Cone-beam CTs (CBCTs) installed on a linear accelerator can be used to provide fast and accurate automatic six degrees of freedom (6DoF) vector displacement information of the patient position just prior to radiotherapy. These displacement corrections can be made with 6DoF couches, which are primarily used for patient setup correction during stereotactic treatments. When position corrections ar...
متن کاملA Robust and Affordable Table Indexing Approach for Multi-isocenter Dosimetrically Matched Fields
Purpose Radiotherapy treatment planning of extended volume typically necessitates the utilization of multiple field isocenters and abutting dosimetrically matched fields in order to enable coverage beyond the field size limits. A common example includes total lymphoid irradiation (TLI) treatments, which are conventionally planned using dosimetric matching of the mantle, para-aortic/spleen, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2009